首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49948篇
  免费   5458篇
  国内免费   7910篇
化学   39231篇
晶体学   1526篇
力学   1494篇
综合类   378篇
数学   8187篇
物理学   12500篇
  2024年   45篇
  2023年   550篇
  2022年   724篇
  2021年   1143篇
  2020年   1531篇
  2019年   1563篇
  2018年   1357篇
  2017年   1743篇
  2016年   1781篇
  2015年   1763篇
  2014年   2296篇
  2013年   4267篇
  2012年   2996篇
  2011年   3343篇
  2010年   2886篇
  2009年   3299篇
  2008年   3502篇
  2007年   3459篇
  2006年   3114篇
  2005年   2895篇
  2004年   2579篇
  2003年   2190篇
  2002年   2200篇
  2001年   1644篇
  2000年   1565篇
  1999年   1095篇
  1998年   1003篇
  1997年   879篇
  1996年   819篇
  1995年   813篇
  1994年   712篇
  1993年   613篇
  1992年   493篇
  1991年   372篇
  1990年   258篇
  1989年   265篇
  1988年   218篇
  1987年   158篇
  1986年   159篇
  1985年   159篇
  1984年   126篇
  1983年   76篇
  1982年   109篇
  1981年   119篇
  1980年   98篇
  1979年   103篇
  1978年   72篇
  1977年   42篇
  1976年   33篇
  1973年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Dr. Qing Tang 《Chemphyschem》2019,20(4):595-601
Among the widely studied 2D transition metal dichalcogenides (TMDs), MoTe2 has attracted special interest for phase-change applications due to its small 2H-1T′ energy difference, yet a large scale phase transition without structural disruption remains a significant challenge. Recently, an interesting long-range phase engineering of MoTe2 has been realized experimentally by Ca2N electride. However, the interface formed between them has not been well understood, and moreover, it remains elusive how the presence of Ca2N would affect the basal plane reactivity of MoTe2. To address this, we performed density functional theory (DFT) calculations to investigate the potential of tuning the phase stability and chemical reactivity of a MoTe2 monolayer via interacting with Ca2N to form a van der Walls heterostructure. We found that the contact nature at the 2H-MoTe2/Ca2N interface is Schottky-barrier-free, allowing for the spontaneous electron transfer from Ca2N to 2H-MoTe2 to make it strongly n-type doped. Moreover, Ca2N doping significantly lowers the energy of 1T′-MoTe2 and dynamically triggers the 2H-to-1T′ transformation. The Ca2N-induced phase modulation can also be applied to tune the phase energetics of MoS2 and MoSe2. Furthermore, using H adsorption as the testing ground, we also find that the H binding on the basal plane of MoTe2 is enhanced after forming heterostructure with Ca2N, potentially providing basis for surface modification and other related catalytic applications.  相似文献   
42.
Two new Zn2Dy2 complexes were constructed from Zn (II) salen‐type Schiff base complex fragment and 2,6‐pyridinedimethanol (H2pdm) or its Br‐substituted analogue (4‐bromopyridine‐2,6‐diyl)dimethanol (H2Brpdm); their molecular formulas are [Zn2Dy2(L)2(pdm)2(MeOH)2](ClO4)2 [ 1 , H2L = N, N′‐ bis(3‐methoxysalicylidene)‐1,3‐diaminopropane] and [Zn2Dy2(L)2(Brpdm)2(MeOH)2](ClO4)2 [ 2 ], the Dy (III) ions of which have a NO7 triangular dodecahedral coordination sphere. The two complexes show not only ferromagnetic interaction but also field‐induced single‐molecule magnet (SMM) behavior, which are rare Dy (III)‐containing cluster complexes with the NO7 triangular dodecahedral coordination sphere that can show good magnetic relaxation. The energy barrier value of complex 2 is higher than those of complex 1 and the Dy (III) complexes with the DyNO7 triangular dodecahedral coordination configuration reported in the literature.  相似文献   
43.
The large-scale production of ammonia mainly depends on the Haber–Bosch process, which will lead to the problems of high energy consumption and carbon dioxide emission. Electrochemical nitrogen fixation is considered to be an environmental friendly and sustainable process, but its efficiency largely depends on the activity and stability of the catalyst. Therefore, it is imperative to develop highefficient electrocatalysts in the field of nitrogen reduction reaction (NRR). In this paper, we developed a BiVO4/TiO2 nanotube (BiVO4/TNT) heterojunction composite with rich oxygen vacancies as an electrocatalytic NRR catalyst. The heterojunction interface and oxygen vacancy of BiVO4/TNT can be the active site of N2 dynamic activation and proton transition. The synergistic effect of TiO2 and BiVO4 shortens the proton transport path and reduces the over potential of chemical reaction. BiVO4/TNT has high ammonia yield of 8.54 μg·h−1·cm−2 and high Faraday efficiency of 7.70% in −0.8 V vs. RHE in 0.1 M Na2SO4 solution.  相似文献   
44.
Two-dimensional van der Waals magnetic materials are intriguing for applications in the future spintronics devices, so it is crucial to explore strategy to control the magnetic properties. Here, we carried out first-principles calculations and Monte Carlo simulations to investigate the effect of biaxial strain and hydrostatic pressure on the magnetic properties of the bilayer CrI3. We found that the magnetic anisotropy, intralayer and interlayer exchange interactions, and Curie temperature can be tuned by biaxial strain and hydrostatic pressure. Large compressive biaxial strain may induce a ferromagneticto-antiferromagnetic transition of both CrI3 layers. The hydrostatic pressure could enhance the intralayer exchange interaction significantly and hence largely boost the Curie temperature. The effect of the biaxial strain and hydrostatic pressure revealed in the bilayer CrI3 may be generalized to other two-dimensional magnetic materials.  相似文献   
45.
A series of chalcone ligands and their corresponding vanadyl complexes of composition [VO (LI–IV)2(H2O)2]SO4 (where LI = 1,3‐Diphenylprop‐2‐en‐1‐one, LII = 3‐(2‐Hydroxy‐phenyl)‐1‐phenyl‐propenone, LIII = 3‐(3‐Nitro‐phenyl)‐1‐phenyl‐propenone, LIV = 3‐(4‐Methoxy‐phenyl)‐1‐phenyl‐propenone) have been synthesized and characterized using various spectroscopic (Fourier‐transform infrared, electrospray ionization mass, nuclear magnetic resonance, electron paramagnetic resonance, thermogravimetric analysis, vibrating sample magnetometer) and physico‐analytic techniques. Antidiabetic activities of synthesized complexes along with chalcones were evaluated by performing in vitro and in silico α‐amylase and α‐glucosidase inhibition studies. The obtained results displayed moderate to significant inhibition activity against both the enzymes by vanadyl chalcone complexes. The most potent complexes were further investigated for the enzyme kinetic studies and displayed the mixed inhibition for both the enzymes. Further, antioxidant activity of vanadyl chalcone complexes was evaluated for their efficiency to release oxidative stress using 2,2‐diphenyl‐1‐picryl‐hydrazyl‐hydrate assay, and two complexes (Complexes 2 and 4 ) have demonstrated remarkable antioxidant activity. All the complexes were found to possess promising antidiabetic and antioxidant potential.  相似文献   
46.
The N–N bond is present in many important organic compounds, such as hydrazines, pyrazoles, azos, etc. Many methods based on transition metal catalyzed N–N coupling or functionalization of hydrazine have been reported for the synthesis of N–N containing organic compounds. In recent years, electrochemical dehydrogenative N–H/N–H coupling has become a powerful tool for the construction of N–N bearing organic compounds. The electrochemical methods employ electrons as traceless redox reagents instead of chemicals and produce hydrogen as the only byproduct. In this review, we summarize the recent advances in the electrochemical dehydrogenative N–H/N–H coupling reactions with focus on the mechanistic insights and synthetic applications of these transformations.  相似文献   
47.
This study investigated the effects of different treatment of alkaline pH-shifting on milk protein concentrate (MPC), micellar casein concentrate (MCC) and whey protein isolate (WPI) assisted by the same ultrasound conditions, including changes in the physicochemical properties, solubility and foaming capacity. The solubility of milk proteins had a significant increase with gradual enhancement of ultrasound-assisted alkaline pH-shifting (p < 0.05), especially for MCC up to 99.50 %. Also, treatment made a significant decline in the particle size of MPC and MCC, as well as the turbidity of the proteins (p < 0.05). The foaming capacity of MPC, MCC, and WPI was all improved, especially at pH 11, and at this pH, the milk protein also showed the highest surface hydrophobicity. The best foaming capacity at pH 11 was the result of the combined effect of particle size, potential, protein conformation, solubility, and surface hydrophobicity. In conclusion, ultrasound-assisted pH-shifting treatment was found to be effective in improving the physicochemical properties and solubility and foaming capacity of milk proteins, especially MCC, with promising application prospect in food industry.  相似文献   
48.
49.
The minimum k-enclosing ball problem seeks the ball with smallest radius that contains at least k of m given points. This problem is NP-hard. We present a branch-and-bound algorithm on the tree of the subsets of k points to solve this problem. Our method is able to solve the problem exactly in a short amount of time for small and medium sized datasets.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号